EUROPE’S LEADING GRAPHENE CONFERENCE

GRAPHENE MAGAZINE 2018

ZERO-GRAVITY GRAPHENE
PHONE OF THE FUTURE
BIODEGRADABLE GRAPHENE
GRAPHENE FLAGSHIP ROUNDS
THE HALFWAY MARK

GRAPHENE FLAGSHIP

Funded by the European Union
THE GRAPHENE FLAGSHIP
SCHOOL FOR EARLY CAREER RESEARCHERS

GRAPHENE
3-8 FEBRUARY 2019, OBERGURGL, AUSTRIA

Science and Technologies of 2D Materials

- Lectures by key experts
- Excellent networking opportunities
- Workshops and group activities
- Poster sessions

www.graphene-flagship.eu
TABLE OF CONTENTS

2 From the Editor
3 Graphene Flagship Rounds the Halfway Mark
5 Interview: Katarina Boustedt
6 ZERO-GRAVITY GRAPHENE
8 GRAPHENE SQUEEZES LIGHT TO ONE ATOM
22 In Their Words: Graphene Week Testimonials
23 Meet the Chair: Jose Maria Pitarke
24 BIODEGRADABLE GRAPHENE
25 Mapping Graphene’s Industry Potential
26 Graphene Validation Service
27 Fostering Technological Breakthroughs
28 Graphene Spotlight: Miriam Marchena
29 Phone of the Future

PROGRAMME

9 Programme
10 Chair’s Welcome
11 Programme Overview
12 Sunday Detailed Programme
12 Monday Detailed Programme
14 Tuesday Detailed Programme
16 Wednesday Detailed Programme
18 Thursday Detailed Programme
20 Friday Detailed Programme
21 Conference Map
21 Sponsors and Exhibitors
FROM THE EDITOR

Welcome to the first edition of the Graphene Week magazine. Over the years Graphene Week has grown to be more than just a graphene conference. It is an expression of the Graphene Flagship’s accomplishments both in the form of scientific achievements and as the definitive source for information about the graphene universe: from the lab to industrial applications.

While Graphene Week’s presentations, workshops, exhibition and other events come together in a collage presenting the many pieces that make up the Graphene Flagship, this magazine seeks to fill in the gaps. The Graphene Flagship is much more than its individual pieces. Collaboration and a broader purpose allow the individual efforts, presented at Graphene Week, to transcend to another level. Taken together they can transform industries, touch lives and maybe even change the world as we know it.

So, take a step back from your corner of the graphene universe and take a moment to look at the bigger picture. See how we all fit into the larger whole, and consider how your conversations, interactions and presentations this week can influence the course of graphene research and innovation. What will be your takeaway? Perhaps a new collaboration, a new direction or even a new inspiration?

Don’t let the networking stop here. Keep in touch with the Graphene Flagship community all year through our social media channels!

REBECCA WATERS
Graphene Flagship Communications Officer
The Graphene Flagship has much to celebrate and a great deal to look forward to as it rounds the halfway mark and enters the third phase of the ten-year, European Commission funded initiative to bring together academic and industrial researchers and take graphene and related materials from the realm of academic laboratories into European society, generating economic growth, jobs and opportunities.

“The final review of the first core project confirms that the Graphene Flagship is well on track to reach its ambitious goals,” says Graphene Flagship Director Jari Kinaret.

The EC released the results of its review in August following an extensive look at reports and presentations from Graphene Flagship leadership as well as a demonstration of over 20 graphene product prototypes. The reviewers commended the Graphene Flagship for effectively transforming individual research initiatives into a “genuine collaboration towards larger goals” and cited a number of scientific and technical achievements as evidence that the project is moving in the right direction.

“Graphene and related materials are at the centre of an ever-increasing number of initiatives worldwide. With thousands of materials available that can be combined amongst themselves, there is an almost endless set of possibilities available for future investigation,” says Graphene Flagship Science and Technology Officer Andrea Ferrari. “The Graphene Flagship continues to study the properties and uses of these new materials and materials combinations, leading to the development of both new science and new applications.”

In fact, the output of the Graphene Flagship project is quite formidable. From the start of the flagship, consortium members have published over 2,400 scientific papers which have been cited more than 50,000 times. In addition, they have been granted 25 patents related to the Graphene Flagship and launched six new companies. Of the 43 graphene-related products that have been introduced to the market, most are different types of graphene materials or formulations. The technology has been maturing and higher value products such as products utilizing graphene composites and graphene-based photodetectors are being launched.

As demonstrated by its publication output and patent portfolio, the Graphene Flagship is defining the international forefront in its field. Its output includes, for instance, new ways to produce two-dimensional materials and their heterostructures, record-breaking photodetectors, novel sensors, next generation energy storage solutions and advanced composites for...
uses in aerospace applications. Further details can be found in the Graphene Flagship’s annual reports available at www.graphene-flagship.eu/annual-reports.

Other notable graphene successes include: work towards a high-speed photonic switch for 5G communication technologies, the leading edge of the horizontal rear stabilizer of an Airbus 350 and artificial retina implants to allow blind patients to recover some degree of vision.

Furthermore, a serendipitous discovery by researchers in the Health and Environment Work Package that few-layer graphene flakes kill monocytes—a type of immune cell responsible for one type of leukemia—could lead to a new type of cancer therapy.

Composites applications are among the most mature markets for graphene, with several commercial products already available from Graphene Flagship partners. More recently, products are being launched in other areas as well. For example, based on research conducted within the Graphene Flagship framework, Emberion launched a fully packaged photodetector module that can detect light in the visible to short-wave infrared ranges. Aimed at industrial applications including spectrometry, gas detection and power measurements, the low-noise, high-sensitivity detectors are now available for Emberion’s customer base. This product is the Flagship’s first commercial launch exploiting graphene’s unique electro-optical properties.

PUBLIC OUTREACH

Graphene Flagship events have played a key role in increasing awareness of graphene among academic communities, industries and the general public. Graphene Week, Europe’s leading graphene conference, provides a venue for researchers to present their findings and industry representatives to exhibit their work in the field of graphene and related two dimensional materials. The event, now in its 13th year, attracts 700 participants from 45 countries worldwide and features 190 expert presentations.

Each edition of Graphene Study, the Graphene Flagship’s school for early career researchers, aims to bring together students working on related areas of research with experienced scientists from academia and industry, helping to shape the future of graphene.

The Graphene Flagship is actively engaging in the education of future experts in graphene and related technologies. To this extent, the project has hired over 300 graduate students that are trained by the Flagship and after graduation will take their expertise to European industries, further strengthening the knowledge transfer between academia and industry.

THE FUTURE

“Research cannot be planned in detail, and we must always maintain a basic research component even when the centre of gravity of the Graphene Flagship moves to higher technology readiness levels,” Kinaret says. “This said, in the coming years the Flagship must increasingly focus on those areas where it has the highest potential to create positive impact in Europe. We must rely on our combined expertise and place our bets to maximize the payoff to our funders, the European tax-payers.”
Katarina Boustedt joined the Graphene Flagship on the day it launched—1 October 2013. Her role was truly unique, to manage a project that started with 75 partners. She was instrumental in developing the Graphene Flagship into the sophisticated project we see today. Five years later, as she leaves the Flagship to move on to her next exciting challenge, we talk to Katarina about why she joined the Flagship, what she has achieved during this time and her hopes for the future.

SF: How did you get involved with the Graphene Flagship in the first place?

KB: My route to joining the Graphene Flagship was not what you would expect. I read in the Swedish newspaper, Göteborgs-Posten, about a big European Union project coming to Chalmers and thought it sounded extremely interesting. I was working for Ericsson Research as a senior researcher at the time, but as Ericsson was moving from focusing on hardware to software, I was looking for a new challenge. So, I contacted Jari Kinaret (the Director of the Graphene Flagship) and simply said, ‘you’re going to need a good project manager, here I am.’ Although at this point Jari had not considered the role, I convinced him that to run a project of this size, an experienced project manager would be essential. They recruited for the post, and happily I was chosen because of both my project management skills and my industrial expertise.

SF: Managing an EC project of this size must have been quite a feat – how did it start and evolve over time?

KB: With a project this big, all of the partners had lots of questions. With no written procedures in place, my job started with many many phone calls from the partners. We soon realised that it was completely infeasible to interact with the partners this way—they had to be able to get the information they required for themselves without needing to speak to us. This started very simply with a procedural document that was uploaded to a read only folder which was the early days of what would become the Graphene Flagship intranet—called Onboard. In these early days I worked very hard to find a system that could support the full 10-year lifespan of the project and it has been an invaluable tool for the management of the Graphene Flagship.

Over time the importance of this work was realised and I was made Head of Administration and leader of the work package on Research Management. This held three cross-work package tasks: characterisation and standardisation of graphene, roadmap, and the Samples and Materials Database. This work package then became the industrialisation work package. As the Flagship moves forward in its goal of commercialising graphene, it is important to emphasise the industrialisation work and clearly establish it as a cross-work package initiative to make sure that industry is the driver for commercialisation.

SF: You have been instrumental in setting up the Graphene Flagship as it is today. Why did you decide to leave at this point and what are your hopes for the Flagship as you depart?

KB: It’s been a very challenging five years working for the Flagship, setting up all the processes and procedures for such a big project has been an all-consuming task. However, things are up and running now and honestly there is not much more I can do in this position. As there is nowhere I can advance to in the Flagship structure it’s the perfect time to move on to something new. As I leave the Flagship, I hope that its commercialisation goal is successful and graphene is really put to use.

SF: You also set up the very successful Women in Graphene network, where did the idea come from and how do you hope it will evolve?

KB: Within the Graphene Flagship it was obvious from the start that there are quite a lot of women involved. However, the women were mostly in the earlier stage of their careers and I had a feeling that they were not in focus as much as they should be. I wanted to make sure that all the women working in the Flagship had the network and connections they needed to succeed.

I realised pretty soon that we needed separate meetings, I wanted to give women who may have less of a voice in their current work a place to meet, make connections and hear from other women who are doing and have done fantastic things in their careers. We now have a session at Graphene Week every year, along with a career development stand-alone day which I hope will go some way to achieving this goal. As I hand this group over, I really hope that my vision of a Graphene Flagship mentoring scheme will be realised to make sure that all young researchers have the support that they need to succeed.
ZERO-GRAVITY GRAPHENE
By Siân Fogden

In a successful collaboration between the Graphene Flagship and the European Space Agency (ESA), experiments testing graphene for two different space-related applications have shown promising results. Based on these results, the Graphene Flagship is continuing to develop graphene devices for use in space.

LOOP HEAT PIPES
After initial experiments performed in zero-gravity conditions to investigate if graphene’s thermal properties could improve the performance of loop heat pipes, (the thermal management systems used in aerospace and satellite applications), research continues to move forward within the Graphene Flagship.

“Graphene has many opportunities for applications. One of them, recognised early on, is space technology. The Graphene Flagship, with the leading contribution of aerospace industry partner Leonardo, has demonstrated the viability of graphene for thermal management in space. The plan during Core 2 is to progress it further for tests to be then conducted on a spacecraft,” said Andrea Ferrari, science and technology officer of the Graphene Flagship and chair of its Management Panel.

The researchers are now moving from proof of concept to a true to scale working device using the graphene coated wick.

The wick is the main element in the loop heat pipes where heat is transferred from a hot object into a fluid, which cools the system.

“We were very pleased to find that the measurements we took during the parabolic flight campaigns demonstrated that graphene has a positive effect on the evaporation rate through the wicks. Since then we have been performing further experiments to understand the reasons for this improvement whilst also working on scaling up the graphene coatings to industrial wicks, like the ones on satellites and spacecraft,” said Meganne Christian, a researcher at the National Research Council of Italy (CNR) and part of the loop heat pipe team.

“This is a great example of how the Flagship is working: bringing together three academic partners and one big industrial partner with a clearly defined goal for an application,” said Vincenzo Palermo, vice-director of the Graphene Flagship.

“For a company like Leonardo, innovation is vital: we put great expectations in the industrialisation of graphene-based products. Thanks to the Flagship the introduction into market can be significantly accelerated, as for the loop heat pipe,” says Marco Molina, chief technical officer of space activities at Leonardo.
The graphene wicks were tested in a collaboration between the Microgravity Research Centre, Université libre de Bruxelles, Belgium; the Cambridge Graphene Centre, University of Cambridge, UK; the Institute for Organic Synthesis and Photo-reactivity and the Institute for Microelectronics and Microsystems, both at the National Research Council of Italy (CNR) and industry partner Leonardo Spa, Italy, a global leader in aerospace, operating in space systems and high-tech instrument manufacturing and in the management of launch and in-orbit services and satellite services. To test the graphene-coated wicks in microgravity conditions, the researchers took part in 6 parabolic flights in November and December 2017 which were operated by ESA in partnership with Novespace.

SOLAR SAILS

Testing graphene space-propulsion potential, a team of PhD students from Delft Technical University (TU Delft), The Netherlands participated in ESA’s Drop Your Thesis! campaign, which offers students the chance to perform an experiment in microgravity at the ZARM Drop Tower in Bremen, Germany. To create microgravity conditions, down to one millionth of the Earth’s gravitational force, a capsule containing the experiment is catapulted up and down the 146 metre tower, leading to 9.3 seconds of weightlessness. The TU Delft Space Institute, The Netherlands, also provided support to the GrapheneX project.

The team—named GrapheneX—designed and built an experiment to test graphene for use in solar sails, using graphene membranes provided by Graphene Flagship partner Graphenea. The idea was to test how these would behave under radiation pressure from lasers. In total, the experiment ran five times over 13-17 November 2017.

“Our experiment is like a complex ‘clockwork’ where every component has to go off seamlessly at the right time,” said Rocco Gaudenzi, a member of the GrapheneX team, “it does not often happen that you have to build up such a clockwork from scratch, and you can only test it during the launch itself.”

The team worked hard to make the experiment successful. “Despite the initial technical difficulties, we managed to quickly figure out what was going on, fix the issues and get back on track. We are very happy with the results. We observed laser-induced motion of a graphene light sail, and most importantly we had a great experience!” said Davide Stefani, GrapheneX team member.

Santiago J. Cartamil-Bueno, GrapheneX team leader, indicated that both the experience and the results were valuable to the team. “The most important lesson is that something will always happen, and you need to be ready to adapt or to change,” he said. “I think at the end of the day, it is about the experience; you just need to create new challenges and learn from them, and be ready to grab more experience and go to the next level.”

Though the GrapheneX experiment is now finished, the team is planning further tests as part of a new and ambitious research project, to continue exploring the influence of radiation pressure on graphene light sails.
In a study published in Science, researchers at ICFO – The Institute of Photonic Sciences in Barcelona, Spain, along with other members of the Graphene Flagship, reached the ultimate level of light confinement. They have been able to confine light down to a space one atom, the smallest possible. This will pave the way to ultra-small optical switches, detectors and sensors.

Light can function as an ultra-fast communication channel, for example between different sections of a computer chip, but it can also be used for ultra-sensitive sensors or on-chip nanoscale lasers. There is currently much research into how to further shrink devices that control and guide light.

New techniques searching for ways to confine light into extremely tiny spaces, much smaller than current ones, have been on the rise. Researchers had previously found that metals can compress light below the wavelength-scale (diffraction limit), but more confinement would always come at the cost of more energy loss. This fundamental issue has now been overcome.

“Graphene keeps surprising us: nobody thought that confining light to the one-atom limit would be possible. It will open a completely new set of applications, such as optical communications and sensing at a scale below one nanometer,” said Frank Koppens at Graphene Flagship partner ICFO, who led the research.

This team of researchers including those from ICFO (Spain), University of Minho (Portugal) and the Massachusetts Institute of Technology (USA) used stacks of two-dimensional materials, called heterostructures, to build up a new nano-optical device. They took a graphene monolayer (which acts as a semi-metal), and stacked onto it a hexagonal boron nitride (hBN) monolayer (an insulator), and on top of this deposited an array of metallic rods. They used graphene because it can guide light in the form of plasmons, which are oscillations of the electrons, interacting strongly with light.

“At first we were looking for a new way to excite graphene plasmons. On the way, we found that the confinement was stronger than before and the additional losses minimal. So we decided to go to the one atom limit with surprising results,” said David Alcaraz Iranzo, the lead author from ICFO.

By sending infra-red light through their devices, the researchers observed how the plasmons propagated in between the metal and the graphene. To reach the smallest space conceivable, they decided to reduce the gap between the metal and graphene as much as possible to see if the confinement of light remained efficient, i.e. without additional energy losses. Strikingly, they saw that even when a monolayer of hBN was used as a spacer, the plasmons were still excited, and could propagate freely while being confined to a channel of just one atom thick. They managed to switch this plasmon propagation on and off, simply by applying an electrical voltage, demonstrating the control of light guided in channels smaller than one nanometer.

This enables new opto-electronic devices that are just one nanometer thick, such as ultra-small optical switches, detectors and sensors. Due to the paradigm shift in optical field confinement, extreme light-matter interactions that were not accessible before can now be explored. The atom-scale toolbox of two-dimensional materials has now also proven applicable for many types of new devices where both light and electrons can be controlled even down to the scale of a nanometer.

Andrea C. Ferrari, science and technology officer of the Graphene Flagship added, “While the Flagship is driving the development of novel applications, in particular in the field of photonics and optoelectronics, we do not lose sight of fundamental research. The impressive results reported in this paper are a testimony to the relevance for cutting edge science of the Flagship work. Having reached the ultimate limit of light confinement could lead to new devices with unprecedented small dimensions.”

Reference:
Probing the Ultimate Plasmon Confinement Limits with a van der Waals heterostructure
David Alcaraz Iranzo, Sebastien Nanot, Eduardo J. C. Dias, Itai Epstein, Cheng Peng, Dmitri K. Efetov, Mark B. Lundeberg, Romain Parret, Johann Osmond, Jin-Yong Hong, Jing Kong, Dirk R. Englund, Nuno M. R. Peres, Frank H.L. Koppens
WELCOME

On behalf of the Graphene Flagship, I wish to welcome you to the 13th edition of Graphene Week. I hope you enjoy the Conference and your time in beautiful San Sebastian. The city, long known as a tourist destination, is now also becoming known as a city of science and technology, with new research centres, first-class scientists from around the world and the support of strong industrial activity in the region.

The fundamental science behind graphene and other two-dimensional materials is key at Graphene Week—as it helps to explore new concepts that will lead to the applications of the future—but there will also be a focus on applied science (electronic devices, sensors, flexible electronics, biomedical applications, composites, energy storage, etc.) and on graphene for a sustainable future, including renewable energies.

Graphene Week will include talks from 30 keynote and invited speakers, 95 oral presentations across three parallel sessions, four fringe sessions, over 300 poster contributions, a Graphene Innovation Forum and an Exhibition area.

A special effort has been made this year to combine an excellent program, including speakers from all over the world, with the organization of specific workshops including Graphene for Human Space Exploration, Women in Graphene and a US-EU Workshop on 2D Materials.

We hope you enjoy this opportunity to learn about the latest advances in graphene and other two-dimensional materials and to network with your peers, opening the door to new collaborations and exciting new research.

Thank you for joining us in San Sebastian!

JOSE M. PITARKE
Conference Chair
Director of nanoGUNE

SCIENTIFIC ADVISORY BOARD
ANDREA FERRARI
ANNA ANDERSSON
ANTONIO D’ERRICO
CECILIA MATTEVI
CHUN NING (JEANNIE) LAU
FOUZIA HANNOUR
HENRIK SANDBERG
HONG JUN GAO
HYEONSIK CHEONG
JOSE GARRIDO
KONSTANTIN NOVOSELOV
LUIS HUESO
MAR GARCIA HERNANDEZ
MAURIZIO PRATO
PETER STEENEKEN
TEÓFILO ROJO
VINCENZO PALERMO
YOSHIHIRO IWASA

PROGRAMME COMMITTEE
AMAIA ZURUTUZA
BART VAN WEES
CAMILLA COLETTI
CHRISTOPH STANGL
DANIEL NEUMAIER
EMMANUEL KYMakis
ESTER VAZQUEZ
JOSE M. PITARKE
KARI HJELT
KATARINA BOUSTEDT
KEN VERGUTS
KOSTAS KOSTARELOS
MARCO GOISIS
NIKOLAUS NESTLE
RAINER HILLENBRAND
SANNA ARPIAINE
VLADIMIR FALKO
YOLANDA DE MIGUEL

LOCAL COORDINATOR
ITZIAR OTEGUI
Graphene Week 2018 - Programme Overview

Opening Ceremony
Plenary Session
Chamber Hall
Keynote: Harry Atwater

Registration & Helpdesk
Fundamentals
Chamber Hall

Applications
Room 4+5

Synthesis and Growth
Room 8+9

Graphene Innovation Forum: Roadmap
Room 6+7

Graphene for Human Space Exploration Workshop
Room 10

Exhibition

Registration & Helpdesk
Partnering Division Success Stories
Chamber Hall

Fundamentals
Chamber Hall

Applications
Room 4+5

Synthesis and Growth
Room 8+9

Graphene Innovation Forum: Standardisation
Room 6+7

Women in Graphene

Exhibition

Registration & Helpdesk
Publishing Graphene Research
Chamber Hall

Fundamentals
Chamber Hall

Applications
Room 4+5

Synthesis and Growth
Room 8+9

US-EU Workshop on 2D Materials
Room 6+7

Exhibition

Registration & Helpdesk
Sustainable Research and Innovation
Chamber Hall

Fundamentals
Chamber Hall

Applications
Room 4+5

Synthesis and Growth
Room 8+9

US-EU Workshop on 2D Materials
Room 10

Exhibition

Registration & Helpdesk
Closing Ceremony
Plenary Session
Chamber Hall
Keynote: Alben Merkoc

Fundamentals
Chamber Hall

Applications
Room 4+5

Synthesis and Growth
Room 8+9

US-EU Workshop on 2D Materials
Room 10

Note: Coffee break from 11:00 - 11:30 and 16:30 - 17:00 (Friday morning only). Lunch from 13:15 to 14:30 daily.
SUNDAY 9 SEPTEMBER

15:00–18:00 REGISTRATION & HELPDESK

MONDAY 10 SEPTEMBER

07:45–18:00 REGISTRATION & HELPDESK

08:30–09:00 OPENING CEREMONY – Chamber Hall

JOSE MARIA PITARKE Chair of Graphene Week 2018
JARI KINARET Director of Graphene Flagship
JEAN-FRANÇOIS BUGGENHOUT Head of FET Flagships Unit at DG CONNECT, European Commission
MARKEL OLANO President of the Regional Council of Gipuzkoa
IÑIGO URKULLU President of the Basque Government

11:00–18:00 EXHIBITION – Exhibition Hall

09:00–13:15 PLENARY SESSION – Chairs: Javier Aizpurua and Jong-Hyun Ahn – Chamber Hall

09:00 HARRY ATWATER Tunable light-matter interactions in graphene
09:50 FRANK KOPPENS Quantum nano-devices and polaritons heterostructures 2D materials
10:25 DMITRI BASOV Plasmon polaritons in twisted bilayer graphene
11:00 Coffee in the Exhibition
11:30 XIADONG XU Moiré-excitons in MoSe₂/WSe₂ heterobilayers
12:05 AMALIA PATANE From epitaxy to science and processing technologies of novel van der Waals crystals
12:40 KIRILL BOLOTIN Bending, pulling, and cutting wrinkled two-dimensional materials

13:15–14:30 LUNCH IN THE EXHIBITION HALL

14:30–15:30 FRINGE SESSION I: OPEN FORUM – Chamber Hall

Learn more about the Graphene Flagship project and creating joint networking possibilities.

Speakers: JARI KINARET
KARI HJELT

Panellists: JEAN-FRANÇOIS BUGGENHOUT
AMAIA ZURUTUZA
FABRIZIO TUBERTINI
MEGANNE CHRISTIAN

Moderator: ZUBEROA MARCOS

15:30–18:00 PARALLEL SESSION I: FUNDAMENTALS – Chairs: Luis Hueso and Deji Akinwande – Chamber Hall

15:30 MIGUEL M. UGEDA Observation of Topologically Protected States at Crystalline Phase Boundaries in Single-layer WSe₂
15:45 ROSHAN K. KUMAR Electron Hydrodynamics in Graphene: Introduction and Status
16:00 VITOR PEREIRA Reproduction of the charge density wave phase diagram in 1T-TiSe₂ exposes its excitonic character
16:15 KRISTEN KAASBJERG Unprecedented transport properties of monolayer TMD devices: Experiment and theory
16:30 Coffee in the Exhibition
17:00 SABINA CANEVA Mechanically controlled quantum interference in graphene break junctions
17:15 ROMAIN DANNEAU Confining superconductivity in graphene bilayers
17:30 STEFAN BROMLEY Post-graphene organic Dirac materials with tunable spin-polarised and closed-shell semiconducting states
17:45 KISUNG CHAE Two-Dimensional T₃X (T=C, Si, Ge, Sn; X=O, S, Se, Te) Compounds with Tetrahedral Bonding
PARALLEL SESSION II: APPLICATIONS – Chairs: Rainer Hillenbrand and Amalia Patane – Rooms 4+5

15:30 SIMONE SCHULER
Graphene photodetector based on a photonic crystal defect-waveguide

15:45 DMITRI EFETOV
High-speed bolometry based on Johnson noise detection of hot electrons in cavity-coupled graphene

16:00 SEBASTIAN CASTILLA
High-speed and highly sensitive detection of terahertz radiation using photo-thermoelectric effect in high mobility graphene

16:15 ARTUR MOREIRA-PINTO
Graphene inks for printing of flexible and stretchable electronics

16:30 Coffee in the Exhibition

17:00 EVGENIYA LOCK
Novel graphene functionalization leading to ultrasensitive, robust and fast sulfur contaminants detection in aviation fuels

17:15 RAIVO JAANISO
Graphene-based electronic nose for outdoor air quality

17:30 PETER STEENEKEN
Graphene pressure sensors: concepts and challenges

17:45 PAUL CAMPBELL
Use of two-dimensional transition metal dichalcogenide films for rapid and sensitive detection of hazardous chemical vapors

PARALLEL SESSION III: SYNTHESIS AND GROWTH
Chairs: Amaia Zurutuza and Mar García Hernandez – Rooms 8+9

15:30 YUYOUNG SHIN
Liquid-phase exfoliation of graphene in water using positively charged pyrene derivatives

15:45 PABLO ARES
Isolation of highly stable antimonene under ambient conditions

16:00 ANTONIO E. DEL RIO
Bridging the gap between lab and industrial scale production of 2D crystals

16:15 PIOTR KAMEDULSKI
The synthesis of CNT-graphene composite

16:30 Coffee in the Exhibition

17:00 MAURO OCH
High-Mobility and High-Optical Quality Atomically Thin WS₂

17:15 HSUAN-AN CHEN
Selective growth and contact resistance reduction of Single-Crystal Antimonene prepared by molecular beam epitaxy on MoS₂

17:30 NEERAJ MISHRA
Scalable metal-free CVD growth of graphene on sapphire

17:45 VITALY BABENKO
Routes to high quality h-BN material by CVD

GRAPHENE INNOVATION FORUM: ROADMAP – Chair: Francesco Bonaccorso – Rooms 6+7

15:30 THOMAS REISS
Identifying promising Graphene applications using the Graphene Flagship Technology and Innovation Roadmap

15:50 LIJUN YIN
Chinese Graphene Industry and Graphene Products Certification

16:10 PAOLO BONDAVALLI
Spray-gun deposition method for nanomaterials. Implementation for large impact applications

16:30 Coffee in the Exhibition

17:00 ANTONIO D’ERRICO
The Sustainable Roadmap in ICT Leveraging on Graphene

17:20 ANTONIO CORREIA
Graphene and 2D Materials EUREKA Cluster: Fostering European Competitiveness

17:40 BLANCA GUASCH
Innovation as a Key Factor for the Development of Commercial Products with Graphene

GRAPHENE FOR HUMAN SPACE EXPLORATION WORKSHOP
Chairs: Carlo Saverio Iorio, Monica Monici, Lucia Delogu, Alberto Blanco – Room 10 B+C

15:30 JASON P. HATTON
The European Space Agency programme for Human Space Exploration

16:00 DENIZ BETEN
NATO Science for Peace and Security Programme

16:30 Coffee in the Exhibition

17:00 LUCIA LOMBARDI
Graphene strain sensors

17:15 VANJA MISKOVIC
Alginate-graphene oxide composites for applications in biosensors: wettability and mechanical properties

17:30 FELICE STROLO
Insulin resistance as the possible link between microgravity and impaired wound healing

17:45 GEMMA RIUS
Graphene potential in extreme conditions founded on multidisciplinary methods and micro nanotechnologies

18:00 SANTIAGO CARTAMIL-BUENO
Laser-induced propulsion of graphene lightsails in microgravity

POSTER SESSION 1

WELCOME RECEPTION
TUESDAY 11 SEPTEMBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–18:00</td>
<td>REGISTRATION & HELPDESK</td>
</tr>
<tr>
<td>11:00–18:00</td>
<td>EXHIBITION – Exhibition Hall</td>
</tr>
<tr>
<td>09:00–13:15</td>
<td>PLENARY SESSION – Chairs: Annick Loiseau and M. Pilar López-Sancho – Chamber Hall</td>
</tr>
<tr>
<td>09:00</td>
<td>ANDRE GEIM Electron hydrodynamics and Brown-Zak oscillations</td>
</tr>
<tr>
<td>09:50</td>
<td>PABLO JARILLO-HERRERO Magic Angle Graphene: a New Platform for Strongly Correlated Physics</td>
</tr>
<tr>
<td>10:25</td>
<td>ALBERTO MORPURGO Electronic phase transitions in graphene multilayers</td>
</tr>
<tr>
<td>11:00</td>
<td>Coffee in the Exhibition Hall</td>
</tr>
<tr>
<td>11:30</td>
<td>FELIX CASANOVA Spintronics with 2D-material-based heterostructures</td>
</tr>
<tr>
<td>12:05</td>
<td>DEJI AKINWANDE Atomristors: The Discovery of Universal Memory Effect in Monolayer TMDs and h-BN</td>
</tr>
<tr>
<td>12:40</td>
<td>CINZIA CASIRAGHI Water-based, biocompatible and inkjet printable 2D-inks</td>
</tr>
<tr>
<td>13:15–14:30</td>
<td>LUNCH IN THE EXHIBITION HALL</td>
</tr>
<tr>
<td>14:30–15:30</td>
<td>FRINGE SESSION II: PARTNERING DIVISION SUCCESS STORIES – Chair: Vincenzo Palermo – Chamber Hall</td>
</tr>
<tr>
<td>14:30</td>
<td>LUCIAN COVACI Trans2DTMD project: transport and optoelectronic properties of 2D materials</td>
</tr>
<tr>
<td>14:50</td>
<td>ANDREY TURCHANIN H_2O – Heterostructures of 2D materials and organic semiconductor nanolayers</td>
</tr>
<tr>
<td>15:10</td>
<td>RAQUEL LLORENS-CHRITAL Efficient CO$_2$ capture and oil/water separation by innovative adsorbents based on modified Graphene structures</td>
</tr>
<tr>
<td>15:30–18:00</td>
<td>PARALLEL SESSION I: FUNDAMENTALS – Chairs: Angelika Knothe and Bo Hellsing – Chamber Hall</td>
</tr>
<tr>
<td>15:30</td>
<td>STEPHAN ROCHE Tailoring Spin Dynamics in Graphene by Proximity Effects induced by TMDC and Topological Insulators</td>
</tr>
<tr>
<td>15:45</td>
<td>TALIEH GHIASI Large spin lifetime anisotropy in transition metal dichalcogenide/graphene heterostructures</td>
</tr>
<tr>
<td>16:00</td>
<td>MAHABUB A. BHUIYAN Fe-induced magnetism in van der Waals InSe semiconductor crystals</td>
</tr>
<tr>
<td>16:15</td>
<td>ANDRES ARNAU Evidence of large spin-orbit coupling effects in quasi-free-standing graphene on Pb/Ir(111)</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition Hall</td>
</tr>
<tr>
<td>17:00</td>
<td>M. PILAR LÓPEZ-SANCHO Charged topological solitons in zigzag graphene nanoribbons</td>
</tr>
<tr>
<td>17:15</td>
<td>GIANCARLO SOAVI Broadband electrically tuneable third harmonic generation in graphene</td>
</tr>
<tr>
<td>17:30</td>
<td>ALEXEY KUZMENKO Colossal Landau-level absorption in hBN/graphene/hBN heterostructure</td>
</tr>
<tr>
<td>17:45</td>
<td>ANDRÉS AYUELA Stable Carbon Monosulfide Nanostructures: Chain Arrays and Monolayers</td>
</tr>
<tr>
<td>15:30–18:00</td>
<td>PARALLEL SESSION II: APPLICATIONS – Chairs: Vittorio Pellegrini and Marika Schleberger – Rooms 4+5</td>
</tr>
<tr>
<td>15:30</td>
<td>IN HYUK SON Popcorn-like graphene growth for high performance lithium rechargeable batteries</td>
</tr>
<tr>
<td>15:45</td>
<td>JUAN LUIS GÓMEZ URBANO The role of graphene-based materials in Li-S batteries</td>
</tr>
<tr>
<td>16:00</td>
<td>HUBERT BEISCH Globographite – new carbon foam for technical application</td>
</tr>
<tr>
<td>16:15</td>
<td>PANIZ SOLTANI Synthesis of Novel Carbon Materials for Supercapacitor Applications</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition Hall</td>
</tr>
<tr>
<td>17:00</td>
<td>LAURA CIAMMARUCHI Hydrogen storage in carbon via water splitting</td>
</tr>
<tr>
<td>17:15</td>
<td>SEBASTIANO BELLANI 2D crystals for efficient, solution-processed, pH-universal electrocatalysts for hydrogen evolution reaction</td>
</tr>
<tr>
<td>17:30</td>
<td>MARK BISSETT Chemically functionalized laminar MoS$_2$ membranes for nanofiltration</td>
</tr>
<tr>
<td>17:45</td>
<td>KAI-GE ZHOU Tunable graphene-based membranes</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>15:30</td>
<td>PARALLEL SESSION III: SYNTHESIS AND GROWTH</td>
</tr>
<tr>
<td>15:30</td>
<td>HENRI PRÉVOST Low Pressure CVD growth of multilayer sp2 Boron Nitride on metallic substrates and extended characterization</td>
</tr>
<tr>
<td>15:45</td>
<td>DEBDEEP JENA Quantum Materials and Devices Built Using 2D Materials</td>
</tr>
<tr>
<td>16:00</td>
<td>ABHAY SHIVAYOGIMATH A general approach for the synthesis of two-dimensional compounds by chemical vapour deposition</td>
</tr>
<tr>
<td>16:15</td>
<td>ALBERT DAYDYO CVT growth of n- and p-type MoTe2 single crystals for phase-change applications</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition Hall</td>
</tr>
<tr>
<td>16:45</td>
<td>ARAN GARCIA-LEKUE Multifunctional nanoporous graphene: bottom-up synthesis and electronic characterization</td>
</tr>
<tr>
<td>17:00</td>
<td>JOAN REDWING Epitaxial growth of wafer-scale transition metal dichalcogenides by gas source CVD</td>
</tr>
<tr>
<td>17:15</td>
<td>JACEK BARANOWSKI Structural and Electronic Properties of Carbon Doped Boron Nitride Epilayers</td>
</tr>
<tr>
<td>17:45</td>
<td>MASAKI TANEMURA Exploration of novel catalysts for the low temperature growth of graphene based on in-situ TEM</td>
</tr>
<tr>
<td>15:30</td>
<td>GRAPHEINE INNOVATION FORUM: STANDARDISATION</td>
</tr>
<tr>
<td>15:30</td>
<td>ALBERT REDÓ A step forward for graphene quality control standardization: ONYX</td>
</tr>
<tr>
<td>15:50</td>
<td>ANDREW POLLARD Rapid characterisation of the size of commercially-produced graphene and graphene oxide flakes</td>
</tr>
<tr>
<td>16:10</td>
<td>SAMANEH ETEMADI A systematic study of stability of Graphene oxide (GO)</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition Hall</td>
</tr>
<tr>
<td>16:40</td>
<td>NORBERT FABRICIUS Graphene Industrialization – The Role of Documentary Standards</td>
</tr>
<tr>
<td>17:20</td>
<td>ANGELA HIGHT-WALKER Metrology and Standardization in Emerging Areas: Graphene and 2D Materials</td>
</tr>
<tr>
<td>17:40</td>
<td>XI-JIE YAO Strategy and activities of standardization of graphene and related 2D materials in Korea</td>
</tr>
<tr>
<td>14:30</td>
<td>GRAPHEINE FOR HUMAN SPACE EXPLORATION WORKSHOP</td>
</tr>
<tr>
<td>14:30</td>
<td>DESIRE PANTALONE Acute care surgery and trauma surgery in extreme environment</td>
</tr>
<tr>
<td>14:45</td>
<td>CHIARA ZANARDI Electrochemical bio-sensors based on 2D materials</td>
</tr>
<tr>
<td>15:00</td>
<td>MONICA MONICI The role of mechanical factors in wound healing</td>
</tr>
<tr>
<td>15:15</td>
<td>LIVIA ELENA CRICA How do graphene oxide sheets interact with the blood in vivo</td>
</tr>
<tr>
<td>15:30</td>
<td>MARCO PELIN Impact of graphene related materials on skin keratinocytes: are they suitable for wound healing applications?</td>
</tr>
<tr>
<td>15:45</td>
<td>LUCIA MORBIDELLI Safety and biocompatibility of synthetic biomaterials to be used in tissue repair and regeneration</td>
</tr>
<tr>
<td>16:00</td>
<td>ESTER VAZQUEZ Preparation and Applications of Hybrid Graphene Hydrogels</td>
</tr>
<tr>
<td>16:15</td>
<td>MANUELA MELUCCI Enhanced adhesion of brain cells on biomimetic graphene-oxide-phospholipids substrates</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition Hall</td>
</tr>
<tr>
<td>17:00</td>
<td>GABRIELE CECCARELLI Autologous micro-grafts for tissue engineering applications</td>
</tr>
<tr>
<td>17:15</td>
<td>LUCIA GEMMA DELOGU Graphene immune modulation</td>
</tr>
<tr>
<td>17:30</td>
<td>YARJAN ABDUL SAMAD Chemiresistive sensing with exfoliated graphite/polymer aerogels</td>
</tr>
<tr>
<td>17:45</td>
<td>MAURIZIO CASALINO Vertically illuminated near-infrared graphene/silicon photodetectors</td>
</tr>
<tr>
<td>18:00</td>
<td>WOMEN IN GRAPHENE</td>
</tr>
<tr>
<td>18:00</td>
<td>The Graphene Flagship’s Women in Graphene initiative was established to help support women and create a more gender diverse scientific community. A group discussion will follow the presentations in this session.</td>
</tr>
<tr>
<td>18:00</td>
<td>ANNICK LOISEAU My Path in Science as a Response to a Physics Professor’s Statement on Gender Issues in the Seventies</td>
</tr>
<tr>
<td>18:00</td>
<td>SANNA ARPIAINEN The Gender Effect</td>
</tr>
<tr>
<td>18:00</td>
<td>ALBA CENTENO Switching Career from Academia to Industry</td>
</tr>
<tr>
<td>18:00</td>
<td>POSTER SESSION 2</td>
</tr>
</tbody>
</table>
WEDNESDAY 12 SEPTEMBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–18:00</td>
<td>REGISTRATION & HELPDESK</td>
</tr>
<tr>
<td>11:00–18:00</td>
<td>EXHIBITION – Exhibition Hall</td>
</tr>
<tr>
<td>09:00–13:15</td>
<td>PLENARY SESSION – Chairs: Irene Palacio and Nikolaus Nestle – Chamber Hall</td>
</tr>
<tr>
<td>11:00</td>
<td>Coffee in the Exhibition</td>
</tr>
<tr>
<td>11:30</td>
<td>PETER BØGGILD, Manufacture and metrology challenges for 2D material</td>
</tr>
<tr>
<td>12:05</td>
<td>VINCENZO PALERMO, Selective gas permeation challenges in graphene oxide-polymer self-assembled multilayers</td>
</tr>
<tr>
<td>12:40</td>
<td>BRUNETTO MARTORANA, Graphene: a frontier for a new class of Multifunctional Lightweight Structures in Automotive Sector</td>
</tr>
</tbody>
</table>

13:15–14:30 LUNCH IN THE EXHIBITION HALL

14:30–15:30 FRINGE SESSION III: PUBLISHING GRAPHENE RESEARCH – Chamber Hall

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30–18:00</td>
<td>PARALLEL SESSION I: FUNDAMENTALS – Chairs: Vladimir Falko and Costas Galiotis – Chamber Hall</td>
</tr>
<tr>
<td>15:30</td>
<td>ANNICK LOISEAU, Studying the dielectric function of free-standing 2D materials with angular resolved electron energy loss spectroscopy</td>
</tr>
<tr>
<td>15:45</td>
<td>EVAN REED, A guided safari through the properties of over 1000 layered materials revealed by data mining techniques</td>
</tr>
<tr>
<td>16:00</td>
<td>ION ERREA, CDW temperature in bulk and monolayer transition metal dichalcogenides from first-principles</td>
</tr>
<tr>
<td>16:15</td>
<td>NIELS HESP, Super-planckian electron cooling in a Van der Waals stack</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition</td>
</tr>
<tr>
<td>17:00</td>
<td>SAMUEL BREM, Exciton Relaxation Cascade in Two-dimensional Transition-metal dichalcogenides</td>
</tr>
<tr>
<td>17:15</td>
<td>AMBER McCREARY, Characterizing chemically grown MoS₂ grain boundaries by atomic force microscopy</td>
</tr>
<tr>
<td>17:30</td>
<td>GWAN-HYOUNG LEE, Characterizing chemically grown MoS₂ grain boundaries by atomic force microscopy</td>
</tr>
</tbody>
</table>

15:30–18:00 PARALLEL SESSION II: APPLICATIONS – Chair: Marco Romagnoli and Siva Bohm – Rooms 4+5

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30</td>
<td>JEANIE LAU, Spin and Charge Transport in Few-Layer Graphene and Phosphorene Devices</td>
</tr>
<tr>
<td>15:45</td>
<td>MUHAMMAD ASAD, Graphene field-effect transistors for high frequency applications</td>
</tr>
<tr>
<td>16:00</td>
<td>KURT GASKILL, Remote epitaxy: a path to tomorrow’s electronics</td>
</tr>
<tr>
<td>16:15</td>
<td>STEVEN KOESTER, 2D materials for a new generation of multi-functional devices</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition</td>
</tr>
<tr>
<td>17:00</td>
<td>LUCIA LOMBARDI, Loop heat pipes for space applications with graphene coated wicks</td>
</tr>
<tr>
<td>17:15</td>
<td>TIAN CAREY, Spray coating thin films on three-dimensional surfaces for a semi-transparent capacitive touch device</td>
</tr>
<tr>
<td>17:30</td>
<td>CRISTINA VALLES, Sprayable highly conductive graphene/polyelectrolyte layer-by-layer coatings</td>
</tr>
<tr>
<td>17:45</td>
<td>MARCO GOISIS, Development of new graphene-modified photocatalysts for cementitious surfaces for environmental remediation</td>
</tr>
</tbody>
</table>
15:30–18:00 PARALLEL SESSION III: SYNTHESIS AND GROWTH
Chairs: Sara Dale and Luigi Colombo – Rooms 8+9

15:30 GABRIELA COPETTI Incorporation of chlorine and fluorine dopants on MoS2
15:45 MAXIM RYBIN Modification of the optical and electrical properties of CVD graphene
16:00 ANDREAS JOHANSSON Dressing graphene with a pattern of epoxy and hydroxyl groups
16:15 CIAN BARTLAM On the rational design of aqueous graphene dispersants
16:30 Coffee in the Exhibition
17:00 MICHAL OTYEPKA Synthesis and Properties of Covalently Functionalized Graphenes
17:15 FUMIN HUANG Layer-by-layer laser thinning of graphene oxide few-layers
17:30 ALBERTO FINA Molecular Junctions between Graphene Nanoplatelets to Enhance Heat Transfer in Nanomaterials
17:45 YASUNORI TATENO Chemical State Analysis on the Interface between Graphene and Al2O3 using Synchrotron Radiation

15:30–18:00 GRAPHENE INNOVATION FORUM: COMMERCIALISATION – Chair: Sophie Charpentier – Rooms 6+7

15:30 ALBA CENTENO Graphene Wafer Scale Integration
15:50 FRANCESCO BONACCORSO Graphene-based Materials: The route Towards Commercialization
16:10 RICHARD-MARC LACASSE Graphene Start-ups: Making Inroads on the Canadian Stock Markets
16:30 Coffee in the Exhibition
17:00 IÑIGO CHAROLA High-quality CVD Graphene Field-Effect Transistors
17:20 IÑIGO MARTIN FERNANDEZ Integration of CVD graphene for wafer scale fabrication of devices
17:40 KEN VERGUTS Ion intercalation is the main mechanism to delaminate CVD graphene from platinum substrates

18:00–19:30 POSTER SESSION 3

ROADMAP
15:30–18:00 MONDAY, 10 SEPTEMBER
The Graphene Innovation Forum begins with a session dedicated entirely to roadmapping graphene and other 2D materials towards future applications and will focus firmly on the needs and perspectives of industry. Graphene and other 2D material technologies have promising properties and the potential to lead to advancements in different applications.

STANDARDISATION
15:30–18:00 TUESDAY, 11 SEPTEMBER
The importance of standardisation for any material that is to be commercially successful cannot be overstated and there are many different issues surrounding standardisation of graphene and other 2D materials. Several of these issues will be explored in this session.

COMMERCIALISATION
15:30–18:00 WEDNESDAY, 12 SEPTEMBER
Commercialisation is at the heart of the Graphene Innovation Forum and this session will explore how to accelerate graphene and related 2D materials through to commercialisation.
THURSDAY 13 SEPTEMBER

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00–18:00</td>
<td>REGISTRATION & HELPDESK</td>
</tr>
<tr>
<td>11:00–18:00</td>
<td>EXHIBITION – Exhibition Hall</td>
</tr>
<tr>
<td>09:00–13:15</td>
<td>PLENARY SESSION – Chairs: Laura Ciammaruchi and Marco Goisis – Chamber Hall</td>
</tr>
<tr>
<td>09:00</td>
<td>CLARE GREY Applications of Graphene and 2D Carbons in Energy Storage</td>
</tr>
<tr>
<td>09:50</td>
<td>VITTORIO PELLEGRINI Graphene-based electrodes for high-power batteries</td>
</tr>
<tr>
<td>10:25</td>
<td>MAURICIO TERRONES A review of Defects in Metal Dichalcogenides: Doping, Alloys, Interfaces, Vacancies and Their Effects in Catalysis & Optical Emission</td>
</tr>
<tr>
<td>11:00</td>
<td>Coffee in the Exhibition</td>
</tr>
<tr>
<td>11:30</td>
<td>MARIKA SCHLEBERGER Nanoporous 2D materials: From Membranes to Catalysis</td>
</tr>
<tr>
<td>12:05</td>
<td>SLAVEN GARAJ Graphene-based membranes</td>
</tr>
<tr>
<td>12:40</td>
<td>SIVA BOHM Industrial applications of graphene tuned coatings</td>
</tr>
</tbody>
</table>

| 13:15–14:30 | **LUNCH IN THE EXHIBITION HALL** |

<table>
<thead>
<tr>
<th>14:30–15:30</th>
<th>FRINGE SESSION IV: SUSTAINABLE RESEARCH & INNOVATION Chair: Vincenzo Palermo – Chamber Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:30</td>
<td>RALF LINDNER Towards Responsible Research and Innovation in the Graphene Flagship: Concepts and Practical Approaches</td>
</tr>
<tr>
<td>15:00</td>
<td>BENGT FADEEL Safety assessment of graphene-based materials: lessons from Nano safety research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15:30–18:00</th>
<th>PARALLEL SESSION I: FUNDAMENTALS – Chair: Xiaodong Xu and Dmitri Basov – Chamber Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30</td>
<td>MIKA PETTERSSON Optical forging of graphene into three-dimensional shapes</td>
</tr>
<tr>
<td>15:45</td>
<td>CARINO FERRANTE Raman spectroscopy of graphene under ultrafast laser excitation</td>
</tr>
<tr>
<td>16:00</td>
<td>KEN LIU Ultra-fast Photon emission and pulse propagation in graphene</td>
</tr>
<tr>
<td>16:15</td>
<td>MORTEN GJERDING Layered van der Waals crystals and heterostructures with hyperbolic light dispersion</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition</td>
</tr>
<tr>
<td>17:00</td>
<td>MARTA AUTORE Boron nitride nanoresonators for enhanced molecular vibrational spectroscopy and strong coupling</td>
</tr>
<tr>
<td>17:15</td>
<td>ANTONELLO SINDONA Interband plasmon of silicene grown on silver</td>
</tr>
<tr>
<td>17:30</td>
<td>DAVID ALCARAZ Confinement of plasmons down to one atom with Graphene/hBN/metal Heterostructures</td>
</tr>
<tr>
<td>17:45</td>
<td>IRATI ALONSO A near deterministic plasmonic quantum Zeno gate using graphene nanoribbons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15:30–18:00</th>
<th>PARALLEL SESSION II: APPLICATIONS Chairs: Teófilo Rojo and Maurizio Prato – Rooms 4+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30</td>
<td>SANJAY B. THORAT Graphene-polymer composites: the effect of flakes aspect ratios on the composite properties</td>
</tr>
<tr>
<td>15:45</td>
<td>GRISELDA GALLAND Polylefin/r-GO/CNT-Fe nanocomposites with magnetic and semiconductor properties</td>
</tr>
<tr>
<td>16:00</td>
<td>ANASTASIOS MANIKAS Out-of-plane phenomena and fracture of graphene/polymer systems</td>
</tr>
<tr>
<td>16:15</td>
<td>RANI ROHINI Excellent electromagnetic wave absorber for Ku-band frequency derived from functional GO/epoxy/carbon fiber composites</td>
</tr>
<tr>
<td>16:30</td>
<td>Coffee in the Exhibition</td>
</tr>
<tr>
<td>17:00</td>
<td>LUCIA DELOGU Transcriptomic and single cell interaction properties of graphene in human primary immune cells</td>
</tr>
<tr>
<td>17:15</td>
<td>INÊS GONÇALVES Coatings of graphene nanoplatelets for antimicrobial silicone catheters</td>
</tr>
<tr>
<td>17:30</td>
<td>LAURA SAENZ DEL BURGO Hybrid alginate-graphene oxide microcapsules for the development of cell-based therapies</td>
</tr>
<tr>
<td>17:45</td>
<td>MÁRIA CONCEPCIÓN SERRANO Tissue response of the injured rat spinal cord to the implantation of reduced graphene oxide scaffolds and microfibers</td>
</tr>
</tbody>
</table>
15:30–18:00 PARALLEL SESSION III: SYNTHESIS AND GROWTH
Chairs: Peter Bøggild and Sanna Arpiainen – Rooms 8+9

15:30 IRENE PALACIO NaCl films as capping layers for graphene
15:45 IAN KINLOCH Electrochemical Exfoliation of 2D materials for composite and energy applications
16:00 YU-WEI ZHANG Complete selenization of MoS₂ to form wafer-scale and layer number controllable MoSe₂ films
16:15 HAPPINESS IJJE Production of graphene related materials in molten chlorides
16:30 Coffee in the Exhibition
17:00 NIKOLAUS NESTLE Scaling up material innovations enabled by top-down GRM: a need for value chain bundles reflecting coupled production
17:15 ESTER VAZQUEZ Sweet Green Graphene: A Mechanochemical Synthesis
17:30 BLERINA GJOKA Towards Highly Modified Graphene Oxide and Functional Derivatives for Industrial Applications

15:30–18:00 US-EU WORKSHOP ON 2D MATERIALS – Chairs: Alan Seabaugh and Vladimir Falko – Rooms 6+7

15:30 ANDREA FERRARI Light scattering and emission from layered materials
15:45 ALAN SEABAUGH Top-gated few-layer WSe₂-on-sapphire field-effect transistors grown by chemical vapor deposition
16:00 MARCO ROMAGNOLI Graphene use in photonics for telecommunications
16:15 SUSAN FULLERTON Using ions to control transport in two-dimensional materials
16:30 Coffee in the Exhibition
17:00 THOMAS MUELLER Second harmonic generation in strained 2D semiconductors
17:15 ROMAN GORBACHEV Fabrication of the next generation of devices
17:30 GIULIO CERULLO Electron cooling and carrier dynamics
17:45 JURGEN SMET Ultrafast diffusion and superdense ordering of lithium in bilayer graphene

18:00–19:30 POSTER SESSION 4
20:00–23:00 CONFERENCE DINNER

WELCOME RECEPTION: KURSAAL FOYER

20:00–22:00 MONDAY, 10 SEPTEMBER
The Graphene Week 2018 welcome reception will be open to all delegates. The reception will be held in the Kursaal Foyer, the most singular and emblematic spot of the conference centre, designed by the prestigious architect Rafael Moneo. The Kursaal Foyer stands out for its luminosity and its two large windows facing out towards the Cantabrian sea. A perfect spot to watch the sunset in September.

CONFERENCE DINNER: SAN TELMO MUSEUM

20:30–23:00 THURSDAY, 13 SEPTEMBER
The conference dinner will be held in the San Telmo Museum, located inside an old Dominican convent from the mid-16th century, situated in the Old Town of San Sebastian. The museum itself is the Basque Country’s oldest museum. Opened in 1900 as a Historical, Artistic and Archaeological Museum, it was relocated to the Dominican convent in 1932. Today, it is reintroducing itself as a Museum of Basque Society and Citizenship.

The delegates will have the opportunity to visit part of the museum’s permanent collection and to taste some of the region’s world-recognised cuisine in a peaceful and historical setting.
FRIDAY 14 SEPTEMBER

08:30–14:30 HELPDESK
09:00–13:15 PLENARY SESSION – Chairs: Inês Goncalves and Ester Vazquez – Chamber Hall
09:00 ARBEN MERKOÇI Graphene-based biosensors
09:50 HOSSAM HAICK Stretchable and Multi-Functional Transistor with Intrinsic Self-Healing Properties for Biomedical Applications
10:25 ALBERTO BIANCO Functional graphene materials for therapy and imaging
11:00 Coffee
11:30 JOSÉ M NAVAS Interaction of graphene related materials and cellular structures: Alterations implications, and applications
12:05 BENGT FADEEL Safety assessment of graphene oxide: focus on the immune system
12:40 ULLA VOGEL Inhalation toxicity of carbon-based nanomaterials

10:00–16:00 US-EU WORKSHOP ON 2D MATERIALS – Room 10A
10:00 JOSHUA ROBINSON Discovering, Creating, and Exploring Novel Atomically-Thin Materials and Heterostructures
10:15 MARCO POLINI Linear and non-linear hydrodynamic flow in graphene
10:30 ROGER LAKE One dimensional van der Waals materials
10:45 ALEXANDER TARTAKOVSKI Optics of TMDC heterostructures
11:00 Coffee
11:30 ALESSANDRO TREDECUCCI On-chip strain engineering platform for two-dimensional materials
11:45 ERIC VOGEL Two-dimensional Materials for Vertical Heterostructures
12:00 ROBERT WALLACE Contact interfaces and transition metal dielectrics
12:15 PEIDE YE 1D van der Waals Nanomaterials: Selenium and Tellurium
12:30 JAMES HWANG Wafer-scale fabrication of MoS₂ and PtSe₂ MOSFETs
12:45 ERIC POP Electrical, thermal and unconventional applications of 2D materials
13:15 Lunch and Closing Ceremony
14:00 GROUP DISCUSSION (2 hours) Moderators: Eric Pop, Joan Redwing, Angela Hight-Walker

13:15–13:30 CLOSING CEREMONY
13:15–14:30 LUNCH

US-EU WORKSHOP ON 2D MATERIALS

15:30–18:00 THURSDAY, 13 SEPTEMBER
10:00–16:00 FRIDAY, 14 SEPTEMBER

Co-organized by the United States’ National Science Foundation (NSF) and Europe’s Graphene Flagship, the 4th US-EU Workshop on 2D Materials provides a venue for discussing the common challenges and opportunities in this rapidly developing research area. The aim of the workshop is to learn about each other’s work and to further the strong tradition of collaboration between the US and the European Union.
CONFERENCE MAP

LIST OF EXHIBITORS
1. CIC nanoGUNE
2. Graphene Flagship
3. Thinky Corporation
4. Das-Nano
5. SIO Grafen
6. IOP Publishing
7. BeDimensional - IIT Graphene
8. neaspec
9. TECNALIA
10. CVD Equipment Corporation
11. AMO GmbH
12. Simune Atomistic Simulations
13. Graphmatech
14. Merck (Sigma-Aldrich)

EXHIBITORS

SPONSORS

COLLABORATORS
“Graphene Week provides good perspective on what’s going on in the community, especially about more applied research,” Noble Laureate Andre Geim says.

ANDRE GEIM The University of Manchester

Graphene Week is great “for networking especially if you are working in graphene and 2D materials, not only for academics and research centres but also for industry.”

AMAIA ZURUTUZA Graphenea

“I look forward to learning from my colleagues about their latest research, as well as meeting and speaking with PhD students and postdocs”, MIT’s Pablo Jarillo-Herrero says of Graphene Week. “Of course, San Sebastian’s famous cuisine will be a highlight in the evenings!”

PABLO JARILLO-HERRERO Massachusetts Institute of Technology

“Graphene Week is the only graphene conference that has a large focus on fundamental science in addition to the applications, a balance other conferences don’t have, making it unique in the landscape of graphene events,” says Nobel Laureate Konstantin Novoselov.

KONSTANTIN NOVOSELOV The University of Manchester

“As a toxicologist in nanosafety, I really look forward to being able to disseminate knowledge on safe use of nanomaterials to a lot of scientists who work with nanomaterials,” says Ulla Birgitte Vogel, who will be speaking at Graphene Week. “Graphene Week is an excellent forum because it will allow me to reach a large forum of innovators.”

ULLA BIRGITTE VOGEL National Research Centre for the Working Environment, Denmark

Graphene Week “is, of course, one of the main international events focused on graphene and related materials,” says Deji Akinwande of The University of Texas at Austin. “It is special because many of the experts attend this event sharing the latest breakthroughs before they are widely published.”

DEJI AKINWANDE The University of Texas at Austin
MEET THE CHAIR
By Rebecca Waters

While we may know him as the Graphene Week 2018 Conference Chair, Jose Maria Pitarke is the founding director of the Basque Nanoscience Research Center nanoGUNE, in San Sebastian, Spain, and a full professor of physics researching fundamental aspects of electronic excitations in two-dimensional materials at the University of the Basque Country. Between meetings to fine-tune this year’s fantastic conference line-up, we took the opportunity to get to know him better.

RW: Tell us about your research.
JMP: Recently, I have been looking at collective excitations (plasmons) in graphene and other two-dimensional materials. We predicted a new class of plasmons (acoustic plasmons) in doped graphene that are expected to exist in addition to the conventional two-dimensional plasmons that occur in this material. We have also been looking at plasmon modes in bilayer graphene and graphene nanoribbons, and now we are looking at collective excitations in other two-dimensional materials, including the development of fundamentals that allow for an accurate theoretical description of the optical response of these materials.

RW: What are your professional aspirations?
JMP: In addition to my own research, my professional aspirations are focused on the consolidation of nanoGUNE, a research centre that was launched only a few years ago and which we would like to see recognized not only as a research centre that is carrying out top-class, state-of-the-art research but also as a research centre that contributes to the economic development of a knowledge-based society in the Basque Country and worldwide.

RW: How has nanoGUNE’s participation in the Graphene Flagship impacted your work?
JMP: Our Graphene-Flagship participation has been very much focused on the experimental work that is being carried out by Rainer Hillenbrand and his group on plasmonics and phononics in two-dimensional materials. This work is having a large impact within the graphene and nanooptics communities and a patent has already been submitted, to a great extent thanks to our participation in the Graphene Flagship.

RW: In addition to your own research and the research of others at nanoGUNE, you have also led the creation of a graphene producing company. Could you tell us about this experience?
JMP: In 2010, only one year after nanoGUNE’s inauguration, we founded our first start-up company, Graphenea, as a joint venture with private investors. Our mission was to produce and commercialise high-quality graphene wafers and develop graphene-based technologies. Graphenea is now a world-leading graphene producer and is also a member of the Graphene Flagship.

RW: What advice would you give to early career researchers who would like to follow in your footsteps?
JMP: Here I would like to quote Noble Laureate Heini Rohrer, who was a good friend and a member of nanoGUNE’s advisory board. His answer to this question was, “You choose what you like; but once you choose you stick with it and do your best.” To this I would add, “move around and be close to the best researchers in the field.”

RW: Apart from research, what do you do for fun?
JMP: I enjoy outdoor activities like hiking and cycling, but I also, of course, like reading a good book, listening to a good piece of music and/or watching a classical movie.

RW: Any recommendations on what not to miss in San Sebastian and the surrounding area?
JMP: In San Sebastian, attendees should not miss going to the old town for some ‘pintxos’ in the bars and for a walk from the Kursaal to Txillida’s “Comb of the Winds” sculpture at the foot of Mount Igeldo. In the surrounding area, they should go to some of the little picturesque villages in the French Basque Country, only a few kilometres from San Sebastian, or to Getaria for a good ‘txakoli’.
BIODEGRADABLE GRAPHENE

By Nishad Karim

Degradation of pristine graphene occurs in the human body when interacting with a naturally occurring enzyme found in the lungs, announced Graphene Flagship partners; the French National Centre for Scientific Research (CNRS), University of Strasbourg, Karolinska Institute and University of Castilla–La Mancha (UCLM).

Graphene-based products are being designed to be interfaced with the human body within the Graphene Flagship, including flexible biomedical electronic devices. If graphene is to be used for such biomedical applications, it should be biodegradable and thus be expelled from the body.

To test how graphene behaves within the body, Alberto Bianco, and his team at Graphene Flagship partner CNRS, conducted several tests looking at if and how graphene was broken down with the addition of a common human enzyme. The enzyme in question, myeloperoxidase (MPO), is a peroxide enzyme released by neutrophils, cells that are responsible for the elimination of any foreign bodies or bacteria that enter the body, found in the lungs. If a foreign body or bacteria is detected inside of the body, neutrophils surround it and secrete MPO, thereby destroying the threat. Previous work by Graphene Flagship partners found MPO to successfully degrade graphene oxide [Small, 2015, 11, 39 85-3994 and Nanoscale 2018, 10, 1180-1188]. However the structure of non-functionalized graphene was thought to be more degradation resistant. To test this, Bianco and his team looked at the effects of MPO, ex vivo, on two graphene forms: single- and few-layer.

Bianco explains, “We used two forms of graphene, single- and few-layer, prepared by two different methods in water. They were then taken and put in contact with myeloperoxidase in the presence of hydrogen peroxide. This peroxidase was able to degrade and oxidise them. This was not really expected because we thought that non functionalized graphene was more resistant than graphene oxide.”

Rajendra Kurapati, first author on the study, from Graphene Flagship partner CNRS, said, “The results emphasize that highly dispersible graphene could be degraded in the body by the action of neutrophils. This would open the new avenue for developing graphene-based materials.”

With successful ex-vivo testing, in-vivo testing is the next stage. Bengt Fadeel, professor at Graphene Flagship partner Karolinska Institute, “Understanding whether graphene is biodegradable or not is important for biomedical and other applications of this material. The fact that cells of the immune system are capable of handling graphene is very promising.”

Maurizio Prato, leader of the work package dealing with health and environment impact studies, based at Graphene Flagship Partner University of Trieste, said, “The enzymatic degradation of graphene is a very important topic, because in principle, graphene dispersed in the atmosphere could produce some harm. Instead, if there are microorganisms able to degrade graphene and related materials, the persistence of these materials in our environment will be strongly decreased. These types of studies are needed. What is also needed is to investigate the nature of degradation products. Once graphene is digested by enzymes, it could produce harmful derivatives. We need to know the structure of these derivatives and study their impact on health and environment.”

Andrea C. Ferrari, science and technology officer of the Graphene Flagship, and chair of its management panel added, “The report of a successful avenue for graphene biodegradation is a very important step forward to ensure the safe use of this material in applications. The Graphene Flagship has put the investigation of the health and environment effects of graphene at the centre of its programme since the start. These results strengthen our innovation and technology roadmap.”

MAPPING GRAPHENE’S INDUSTRY POTENTIAL
By Rebecca Waters

The Graphene Flagship's Technology and Innovation Roadmap (TIR) demonstrates the various paths that graphene can take to transition from the lab to use in industrial applications. The roadmap aggregates a common view on graphene and related materials (GRM) and provides guidance for graphene research towards market demands. It establishes a timeline for when one can expect graphene to be applied to different application areas.

In every focus investigation, the insufficient maturity of the graphene industry was identified as a major challenge to the commercialization of graphene-based products. Beyond the expansion of production capacity and simultaneous price reductions, key factors for the commercialisation of GRMs include regulatory hurdles, a lack of standardisation and technical demands to graphene properties often only defined in the specific application context.

Through a series of workshops, the Graphene Flagship’s industrialisation team worked to identify specific markets in which graphene could fill a niche or was uniquely suited to solve an industry problem. The latest version of the TIR specifically explored four promising areas for graphene commercialization: supercapacitors, anti-corrosion, Li-ion batteries and neural interfaces.

“Each individual focus investigation explores specific potential future value chains down to exemplary end products such as forklifts, off-shore wind power or hearing aids,” says Henning Döscher of the Graphene Flagship industrialisation group. “The idea is both promoting information exchange across the specific industrial innovation interfaces and deducing exemplary, in-depth information on drivers and obstacles for GRM commercialization.”

“We learn that some aspects may be unique for a very specific niche, others may be at least similar among several application areas, and some issues occur over and over again. Expanding to new focus investigation topics, we hope to both explore further exciting highlight application areas of graphene and, in the sum of the distinct examples, eventually, to obtain a more in-depth understanding of the diverse graphene
applications and to foster their impact on European industries. Hence, we intensified our efforts to involve stakeholder inputs from both industry and the Graphene Flagship to identify and select meaningful topics that promise high specific impact and complement our perspective on the entire field,” he adds.

The industrialisation group’s work over the first five years of the Graphene Flagship identified unmet industrial needs in several sectors, such as energy, automotive and logistics, where GRM could offer solutions in the medium or long run.

“For instance, the logistics industry does not only strive for advanced forklifts (with better suited energy supply systems), but also for novel warehouse systems based on automated guided vehicles (AGV) for which the energy supply demands may shift dramatically,” notes Thomas Reiss, deputy leader for the Graphene Flagship industrialisation group. “However, most of the industrial experts involved in any of our workshops were not aware of the needs and offers of the other stakeholder groups positioned down or up the value chain compared to their own. Hence, there is an urgent need for introducing and elaborating this value chain perspective for different application scenarios. That is exactly what we will intensify in the forthcoming roadmapping work.”

In elaborating the current roadmap, the team discovered significant scepticism towards industrial graphene utilization. The common denominator in industry anecdotes, either from active experience or passive observation, was a lack of quality standards. Therefore, further focus on the Graphene Flagship’s standardization efforts will be key to graphene’s success in the marketplace.

“The lack of application-oriented and traceable material quality standards appears to be the single most important barrier for graphene industrialization across all application fields,” Döscher says.

“The interaction between Graphene Flagship partners and the TIR group has worked very well in the past, and we strongly encourage keeping it up and extending it in the future,” Reiss says. Project members can access the group’s results on the Flagship’s intranet and are encouraged to continue to support and participate in future TIR activities.

To support the successful exploitation of graphene and other 2D materials, the Graphene Flagship has launched a new validation service. The service is provided by authorised national measurement institutes and facilities renowned for their excellence, independence, integrity and impartiality.

The service will initially provide structural, mechanical, optical, thermal, electrical, magnetic, chemical and lifecycle measurements of graphene-enhanced bulk composite materials. During the lifetime of Core 2, new services will be added.

The service is open to everyone and free of charge to Graphene Flagship consortium partners (while budgets permit). The service is ‘open for business’ at the end of September 2018.
The Graphene Flagship has been tasked with taking technologies based on graphene and related materials from the laboratory to commercial applications by 2023. This mission has put the project’s focus on its innovation efforts.

“During the first phase of the project we continued to witness the potential of graphene-based technologies to create market disruptions and transformational innovations,” says Graphene Flagship Head of Innovation Kari Hjelt. “In the next phase we continue to move from materials research towards component development and system-level integration. Our focus is in combining technology push and market pull by working with industry stakeholders to increase technology readiness levels.”

Beginning in April 2018, the Graphene Flagship’s innovation team has hired business developers to help bridge the gap between the laboratory and the marketplace. Each business developer serves a specific graphene application area and help to identify industry needs and how graphene can address them.

“The business developers are the key players in creating the network connecting our research efforts to industry. Their task ranges from scouting the recipients for our technologies to being messengers from industry when it comes to industry trends, needs and roadmaps. They arrange workshops and help teams to create business models,” Hjelt says.

To further the transition towards technology ready applications, the Graphene Flagship will now fund a number of spearhead projects, each with well-defined, application-oriented objectives that are motivated by market opportunities. These spearheads will focus on a wide range of application areas, from solutions for 5G data transmission to solar energy and wearable electronics, but all have the common goal of developing new or improved products with integrated graphene or related materials (GRM).

“All of the spearhead projects have strong company involvement and are committed to producing industrial prototypes within two years in order to spur interest among companies that are currently not involved with the Graphene Flagship,” says Graphene Flagship Director Jari Kinaret.

“The spearhead projects target GRM commercialization in very specific highlight application areas,” says Thomas Reiss, deputy leader of the Graphene Flagship’s industrialisation team.

“Success in any of these projects may drive the industrialisation of the whole field, and thus also enhance the impact of the Graphene Flagship in its entirety.”

“The collaboration with the battery spearhead team in the first phase of the project was a great success, with high mutual benefits,” agrees Henning Döscher, also on the industrialisation team. “Our future plans will certainly try to leverage that. Our initial Core 2 focus, investigations of perovskite/Si tandem photovoltaics and optoelectronic data communication, are carefully aligned to create highest impact in collaboration with the respective spearhead projects. Some of the other planned topics (such as sensors) should enable further collaboration potential.”
GRAPhENE SPOTLIGHT: MIRIAM MARCHENA
By Nishad Karim

Vital Statistics
Name: Miriam Marchena
Age: 30
Institute: Institute of Photonics Sciences (ICFO)

Here Comes the Science
Field: Photonics
Background: Chemical Engineer
Research: Scalable techniques for graphene on glass: growth, transfer and doping control

Miriam Marchena is a new graduate receiving her doctorate from the Institute of Photonic Sciences (ICFO), this summer, in Photonics. She has just started her first postdoc there.

Research Explained
The technique for implementing graphene at a large scale is Chemical Vapour Deposition (CVD), where graphene is typically grown on copper. However, for this application, copper needs to be removed and graphene located onto the target. This transfer procedure is very challenging, as after that the properties of graphene can be altered, reducing its capabilities. During my thesis, my research focused on the development of a technique where graphene could be directly grown on a glass substrate using a metallic intermediate layer, which would be removed during the growth process, thus avoiding the intermediate transfer step. Depending on the area and morphology of this metal, we were able to grow large (and patterned) areas of graphene on glass, but also graphene assembled into three-dimensional shapes, widening the applications of graphene.

During an internship at Corning Incorporated (United States), I had the opportunity to develop a fast dry-transfer technique to transfer graphene from the copper foil to a desired target substrate using current industrial equipment.

Applications
Although graphene has many promising and relevant applications, we were mainly focused on graphene as a transparent electrode, as it is a material that combines lightness, high transmittance, conductivity and flexibility. The last property is what makes it ideal for wearables, making it highly promising for future technology demands.

The graphene structures developed during the thesis have not been tested yet. Their high surface area would make them suitable for alternative applications in catalysis and as membranes for water filtration.

Why academia?
For me at the beginning it was not clear, but then I was very enthusiastic about research, especially how to innovate and create things; I liked the idea of developing processes to make something that could improve real applications. So I guess what I liked most was the innovative side of science; how to create new alternatives for doing something and how to design new ways to solve a problem and bring something new to society that could be useful.

What are your plans for the future: academia, industry or other?
So right now, I am in research, but I am considering making the change to industry later. My ideal position would be one where I can carry on doing research for applications and to develop something that could be used in society. Something very applied.

What is your favourite property/fact about graphene?
Graphene is an atomically thin material meaning you can hardly see it; yet it provides such a wide variety of applications.
PHONE OF THE FUTURE

A GRAPHENE ENHANCED PHONE COULD INTEGRATE SEVERAL TECHNOLOGIES DEVELOPED FROM CURRENT GRAPHENE FLAGSHIP RESEARCH

By Fernando Gomollón-Bel

ANTENNA & COMMUNICATIONS

Graphene can be used to enhance optical data communication to unprecedented rates, while reducing energy consumption and transmission errors. The Graphene Flagship targets data links well above 400 gigabit per second by 2020. Graphene could also be the base of flexible, near-field communication (NFC) antennas, allowing for the creation of new technologies like electronic banknotes or smart wallets.

SCREEN

Screens using graphene could have force sensors, bringing a new dimension to touchscreen technologies. Moreover, thanks to graphene’s high flexibility, we could integrate all these new properties in flexible screens, which could be useful in wearable technology.

SENSEORS

Graphene sensors could be useful for many applications: communicating with wellness sensors all over our body monitoring dangerous infections, oxygen and sugar levels, correcting our posture or even helping us track the progress of neural diseases. Sensors could also analyse our environment.

PROCESSOR & ELECTRONICS

The electronic properties of graphene make it ideal for creating faster, more reliable components for our phones. Graphene is strong and highly conductive but also really thin – just one atom thick. This could lead to tinier, yet faster microprocessors for smart objects and the Internet of Things. GRMs are flexible, allowing devices to be integrated in textiles or even ‘stickers’ on our skin.

HEADPHONES/SPEAKERS

GRMs could make headphones and speakers more energy efficient and tinier, while producing a better sound. When membranes are light, they are usually too flexible and produce unwanted vibrations and noises. Graphene is flexible, yet strong, so the distortions are reduced, and one can enjoy their favourite music with unprecedented clarity.

BATTERY

Graphene could be used to improve the capacity, efficiency and stability of batteries. Graphene batteries could have higher energy storage and better performance over a lifetime of use and recharging. Graphene and related materials (GRMs) can also be used to better the properties of other energy storage solutions like supercaps.

CASE

Graphene is a very strong material. Mixed with resins and plastics, or even just as a coating, graphene can be used to make safer helmets, stronger aeroplane parts and more resistant construction materials. Incorporating graphene and related materials into the casing of the phone of the future could make it much more robust. We may never need to worry about dropping it again!

Source:
SAVE THE DATE: 22-27 SEPTEMBER
HELSINKI, FINLAND
EUROPE’S LEADING GRAPHENE CONFERENCE GOES THE WORLD’S HAPPIEST COUNTRY