Pioneering 2D Materials for semiconductor industry
Wafer Level Single Crystalline 2D Materials
One of the biggest challenges the 2D materials faces to be adopted by this industry is the growth of material with a similar stability, reliability and defect density. In this workshop we addressed and discussed these growth challenges.
About the workshop
One of the key success factors for the phenomenal rise of the semiconductor industry is the production of Si wafers with a defect density of roughly one defect over 10^14 Si atoms. This extremely low defect density provides the industry with a reliable, reproducible and stable material to build the most advanced devices. One of the biggest challenges the 2D materials faces to be adopted by this industry is the growth of material with a similar stability, reliability and defect density. In this workshop we addressed and discussed these growth challenges.
Agenda
11:00 - 11:15 | Cedric Huyghebaert
2D Experimental Pilot Line update
11:15 - 11:55 | Hiroki Ago
Controlled CVD Growth of High-Quality 2D Layered Materials for Electronic and Photonic Applications
The development of graphene research has opened the new field of atomically thin, 2D layered materials. For realizing various applications including high-performance electronic and photonic devices, it is very important to establish synthesis methods of high-quality, large-area 2D materials. We have been studying chemical vapor deposition (CVD) growth of monolayer and bilayer graphene and other related 2D materials, such as and hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs), with the main focus on the understanding of growth mechanisms as well as the growth of high-quality 2D films for advanced applications. In this talk, I will review our recent work on the highly controlled CVD growth and modifications of graphene, h-BN, and their heterostructures.
11:55 - 12:25 | Stephan Hofmann
On the Fundamental Mechanisms that underpin Process Technology for Atomically Thin 2D Films
We systematically adapt in-operando metrology to understand the mechanisms that govern the growth, interfaces and device behaviour of 2D materials at the monolayer limit in realistic process environments, in order to accelerate their development cycles as scalable industrial materials particularly via chemical vapour deposition. The talk will focus on our recent results on graphene, hBN and WS2, highlighting the interdisciplinarity this comprises, ranging from metallurgy and new approaches to epitaxial metal growth to defect characterization by multi-dimensional super-resolution microscopy, machine-learning assisted materials discovery and new quality monitoring approaches at commercial scale.
12:25 - 12:55 | Panel Discussion
Growth challenges for the community and industry.
Moderator: Amaia Zurutuza
12:55 - 13:00 | Closure