Photonics and Optoelectronics
Work Package 8
Photonics is the science of light. It is the study of the wave and particle properties of photons, and the technology to generate, control and detect them. Optoelectronics is a sub-field of photonics, focusing on the theory, design and applications of electronic devices that interact with light.
Thanks to its unique optical and electronic properties, graphene is a rising star in the field, with many applications in solar cells, light-emitting devices, touch screens, long-range communication devices and ultrafast lasers. In the Graphene Flagship’s Photonics and Optoelectronics Work Package, our mission is to use graphene and layered materials to develop components and integrated systems for applications like these.
Putting Graphene to the test
In our Work Package, we benchmark every component against existing technologies. We only target industrial applications, and using graphene, we have a very strong potential for innovation. Photonics and optoelectronics technologies have unique advantages compared to existing technology, and the market demand is very clear.
For instance, graphene integrated with a silicon-based complementary metal–oxide–semiconductor (CMOS) circuit shows a strong advantage in terms of performance over non-silicon-based semiconductors that are not easily integrated into Si-CMOS technology. This enables much lower-cost imaging systems, such as cameras, that can detect light over a much broader range of wavelengths.
Moreover, our optoelectronic components for data communications devices require significantly less power than commercial technologies. Data transfer rates are growing exponentially over time, so our energy-efficient devices will be critical to ensure the next generation of computing is both technologically feasible and environmentally sustainable.
Latest Articles

Light bends electrons through graphene

Emberion raises €6 million for its infrared imaging business
Graphene Flagship partner Emberion offers leading-edge VIS-SWIR cameras with a broad spectral range at a competitive cost. These devices meet the needs of the rapidly expanding global machine vision and surveillance markets.

Graphene for wireless communication
Graphene Flagship Spearhead Project METROGRAPH develops graphene-based photonic chips that could enable cheaper high-bandwidth data transfers.

Tiny silicon rings give huge boost to graphene photodetectors
Graphene photodetectors on silicon microrings could reduce the cost and carbon footprint of data transfer.

New graphene optoelectronic mixers boost high-speed telecommunications
Graphene-enabled technologies for telecom and datacom will accelerate the adoption of protocols for 5G and 6G.

Graphene for Optoelectronics and Photonics Applications
Graphene Flagship Business Developer at ICFO, Olivier Messager, offers his insights on graphene applications in photonics and optoelectronics.