Composites
Work Package 14
Our Work Package develops high-performance composites using graphene and layered materials that meet the high standards required by industrial sectors such as the aerospace, automotive and energy generation industries. We incorporate graphene and layered materials into various different matrix combinations, from thermoplastics and thermoset composites to elastomers and inorganic composites.
Driven by market demand
Our Work Package is motivated by the demands of the commercial market. We have adopted a value chain strategy to establish synergy between the needs of the end users and the state-of-the-art knowledge developed by our academic partners. This philosophy helps us to achieve our goal of creating more cost-effective products with higher technology readiness levels, for rapid transition from the laboratory to the market.
In particular, we are working on the following market-driven composite technologies:
- Low-cost, quality-controlled masterbatches of polymer pellets enhanced by graphene and layered materials, for widespread use in the plastics industry.
- Fibre and fibreglass-reinforced polymer composites with lower weight, higher thermal and electrical resistance, and improved mechanical strength and stiffness. These materials could reduce fuel consumption, emissions and assembly costs in the aerospace and automotive industries.
- Elastomers with improved flexibility and strength, lower shrinkage, better wear resistance and higher chemical resistance and thermal stability – with applications in the aerospace and automotive industries as well as in sensors, robotics, thermal dissipation, fire protection, water resistance and power distribution.
- Composites containing inorganic components, such as metallic powders, nanoparticles or nanofibers, to improve the efficiency of conductors, create coatings for environmental protection and design new components for additive manufacturing. These materials could improve the thermoelectric properties and lifetime of construction materials and reduce assembly time and cost in all of the above industries
Latest Articles

Graphene composites enable the aviation industry to gain altitude

Composites for a greener future
Ali Shaygan Nia, Business Developer at the Graphene Flagship, sets out his vision for graphene-enabled composites.

Graphene paints and resins join the fight against corrosion
Barpimo have just joined the Graphene Flagship consortium as a partner, and they are formulating new graphene-based paints and resins to fight rust

Graphene for Composites Applications
Nathan Feddy is the business developer for composites applications for the Graphene Flagship. Feddy gained key experience in the financial and nanotechnology consultancy sectors prior to joining the team at The University of Manchester’s state-of-the-art Graphene Engineering Innovation Centre (GEIC). He has worked with several high-profile companies to incorporate graphene into their composite materials/products, to provide multi-faceted performance improvements and additional enhancements. Feddy now offers his thoughts on the current state of of graphene in composites applications.
Graphene Flagship partners up European academia and industry to make lighter composites for planes and cars
The Graphene Flagship identified the strategic advantages of integrating graphene into fibre composites, used to build planes and cars.

Smog-eating graphene composite reduces atmospheric pollution
Graphene Flagship partners the University of Bologna, Politecnico di Milano, CNR, NEST, Italcementi HeidelbergCement Group, the Israel Institute of Technology, Eindhoven University of Technology, and the University of Cambridge have developed a graphene-titania photocatalyst that degrades up to 70% more atmospheric nitrogen oxides (NOx) than standard titania nanoparticles in tests on real pollutants.